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The observed relaxation time for the one-dimensional self-gravitating system (OGS) has recently been
shown to be much longer than was anticipated. In this paper, a stochastic model (diffusion) of the ac-
celeration and velocity of a labeled particle in the OGS is used to provide a method for studying the ex-
ploration of the phase space of the system by a single system member. The stochastic assumption leads
to a theory of fluctuations of the discrete system away from mean field (Vlasov) dynamics. These fluctua-
tions are studied in a series of dynamical simulations and compared to those predicted by the theory.
The results compare well for system members of low energy but fail for higher energies. The magnitude
of the fluctuations grows much more rapidly in the theoretical predictions than in the dynamical simula-
tions, suggesting the existence of slow modes of relaxation.

PACS number(s): 05.40.+j, 98.10.+z

I. INTRODUCTION

A central problem for stellar dynamics is the deter-
mination of the time scale for the relaxation of an isolat-
ed, gravitationally bound system, such as a galaxy or glo-
bular cluster. For more than two decades one-
dimensional self-gravitating systems have been used as a
simple model to study relaxation in gravitating systems.
Computer simulations of these systems show that they
tend to progress through various quasiequilibrium states
as they evolve from arbitrary initial conditions. These
quasiequilibrium states often.last for very long times, and
are approximately stationary. Recent dynamical simula-
tions have demonstrated that the relaxation time from ar-
bitrary initial conditions is orders of magnitude greater
than anticipated by theory, and thus casts doubt on many
theoretical models.

The one-dimensional self-gravitating system (OGS) has
been suggested as a model for the motion of stars perpen-
dicular to the plane of a highly flattened galaxy [1]. Oth-
ers have used the system to study Lynden-Bell’s theory of
violent relaxation [2], the usefulness of Vlasov theory for
systems with a large number of constituents [3], or to in-
vestigate ergodicity and relaxation toward equilibrium
for gravitational systems [4]. The long range nature of
the gravitational force complicates the study of the statis-
tics and dynamics of gravitational systems. Each particle
continuously “feels” all the other particles in the system,
making gravitational systems fundamentally different
than systems with short range interactions. The difficulty
involved in studying large systems has generally led one
to a statistical approach.

In order to learn if, how, and when the OGS evolves to
equilibrium much work has been done in studying the dy-
namics of small to medium sized systems looking for evi-
dence of strong ergodic behavior which would result in
eventual thermal equilibrium [4,5]. The study of
Lyapunov exponents and the decay of correlations in
time have been used in attempts to determine when and if
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thermalization occurs. A positive Lyapunov exponent
would guarantee the existence of a mechanism for the
OGS to come to equilibrium in a finite time starting from
arbitrary initial conditions if the energy hypersurface has
a single ergodic component.

Although these methods are very useful, their applica-
tion to large systems is problematic. An alternative
method for investigating relaxation is through the intro-
duction of a stochastic assumption which leads to a
diffusion model for the system evolution. The extent to
which the stochastic model is able to accurately predict
properties of the real system may provide insight into the
ergodic behavior of these systems and how they may
come to equilibrium. Strong ergodic properties are the
source of stochastic phenomena. In addition, the assump-
tion should result in the establishment of bounds for re-
laxation times. The ability of a diffusion model to
represent the system outside of equilibrium might lend it-
self well to the study of the OGS moving toward equilib-
rium.

Brownian motion is a cornerstone of modern none-
quilibrium statistical physics and is a classic example of a
diffusion process. In it, a massive particle is surrounded
by a fluid made up of much smaller particles (atoms). As
the fluid atoms collide randomly with the heavy particle,
the velocity of the heavy particle experiences discrete
random jumps. Since the fluid atoms are so much lighter
than the heavy particle, each macroscopic movement of
the heavy particle is actually the average of many small
collisions with the fluid particles. The probability of the
macroscopic velocity of the heavy particle having a
specific value in the next time interval will depend at
most on its current velocity. With this Markov property,
in the limit of small jumps the velocity process will be-
come a continuous function of time and can be modeled
as a diffusion whose transition probability satisfies a
Fokker-Planck (FP) equation. The basic diffusion equa-
tion describing the Brownian process was first derived by
Einstein [6]. His ideas were later generalized by Smolu-
chowski, Fokker, Planck, Ornstein, and others [7].
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Now consider the discrete one-dimensional gravitating
system made up of N sheets. The velocity of each parti-
cle is a continuous function of time. However, when two
sheets cross, their accelerations experience a finite jump.
In the limit that N — o« the size of the jumps in the ac-
celeration vanishes as 1/N and the crossing rate increases
as N. Both the acceleration and velocity are needed to
describe the system dynamics because the probability of
two sheets crossing will also depend on the sheets’
current velocity. Using this ansatz, it might be possible
to model the acceleration and velocity process as a
diffusion if it is also Markov. A Markov assumption
should model the most rapid movement toward relaxa-
tion that the actual system could possibly realize, thereby
giving a lower bound for the relaxation time, since it ig-
nores memory effects which may constrain the evolution.

Miller [8] recently used these ideas to derive a Fokker-
Planck equation that describes the drift of a particle away
from ideal Vlasov behavior in equilibrium. Using the
canonical ensemble, and assuming that sheet crossings
occur at random times, he was able to model the evolu-
tion of the (a,v) [(acceleration, velocity)] pair as Markov.
He then showed that in the Vlasov limit the (a,v) process
was also Markov and that the equations of motion
governing the process were deterministic. To account for
the finite size and discreteness of a real system the fluc-
tuations must be scaled up to be observable for asymptot-
ically large N. Miller then showed that the evolution of
these scaled fluctuations of the acceleration and velocity
from their deterministic limits was governed by a
Fokker-Planck equation with time-dependent drift and
diffusion tensors [9,10]. In that initial paper the predic-
tions of the model were not investigated.

The purpose of this paper is twofold. The first is to
formulate a more general approach that will allow the
study of other stationary distributions, besides equilibri-
um, that obey Vlasov dynamics (e.g., the waterbag distri-
bution) where a complete canonical description, that in-
cludes interparticle correlations, is lacking. The second
objective is to test the theoretical predictions of the sto-
chastic model against the results of numerically accurate
dynamical simulations. For a general stationary distribu-
tion the equivalent of a canonical ensemble for equilibri-
um is not available. In this paper we build the N-particle
distribution function from singlet distribution functions
by assuming (1) the complete phase space distribution
function has no initial correlations between particles for
systems of large N and (2) the particles remain statistical-
ly independent (i.e., the N-particle distribution function is
completely separable) at all times. This is equivalent to
beginning with the most stochastic model possible. The
assumption of statistical independence (stosszahlansatz)
has been proven for discrete systems in equilibrium in the
limit of large N [11].

Starting with the assumption of statistical indepen-
dence we obtain very general forms for the crossing rates,
infinitesimal increments, and Fokker-Planck equations
that govern the (a,v) process. The general FP equation
for the (a,v) process has no diffusion term and therefore
describes the deterministic motion of a particle in the
Vlasov potential. A general FP equation with a nonzero
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diffusion term is then derived for scaled up variables that
describe the drift of a particle away from its Vlasov im-
age. In principle, any stationary Vlasov distribution
function can then be substituted into the general forms to
give explicit equations that govern the evolution of the
scaled and unscaled (a,v) processes for that system.

Next, to confirm the validity of the general equations,
the equilibrium distribution function (in the Vlasov limit)
is substituted into the general equations which then
reduce to those obtained earlier from the canonical en-
semble [8]. The resulting equations again show that the
scaled fluctuations representing a particle’s drift from
ideal Vlasov behavior are a diffusion that obey a Fokker-
Planck equation with time-dependent drift and diffusion
tensors.

The theoretical predictions of the stochastic model are
investigated by integrating the coupled differential equa-
tions governing the moments of the Markov state vari-
ables which are induced by the FP equation. The time-
dependent behavior of the moments of the scaled process
gives a theoretical prediction of the growth of the fluctua-
tions in time. These quantities can be easily tracked
throughout the course of a dynamical simulation and
compared with the theory.

Finally, in order to check the validity of the theory, we
describe repeated numerical simulations of a system of
N =1000 particles in which the fluctuations in time of a
labeled sheet are recorded and compared to that predict-
ed by theory. The initial acceleration and velocity of the
test sheet are given specific values that correspond to ei-
ther a relatively high or low particle energy in the system.
Comparison of the theoretical predictions with the results
of the simulations shows good agreement for lower ener-
gy particles in the system. The magnitude of the theoret-
ical fluctuations for higher energy particles appears to
grow much more rapidly than for those in the simula-
tions. This discrepancy may indicate the existence of col-
lective modes that are not accounted for in the stochastic
model.

II. DESCRIPTION OF THE SYSTEM

The discrete one-dimensional gravitating system is a
collection of N planar sheets of constant mass density o
infinite in, say, the y and z directions that can move along
the x direction under their mutual gravitational attrac-
tion. Only gravitational forces are considered, thus the
sheets do not collide but merely pass through (cross) one
another. Since all sheets have the same mass density,
during a crossing the sheets simply exchange accelera-
tions and therefore experience a discrete jump, while the
sheet velocities remain continuous functions of time. Be-
tween crossings the sheets simply undergo uniform ac-
celeration produced by the inhomogeneity of the mass
distribution. Because the system is isolated, momentum
conservation allows us to fix the center of mass and set
the total momentum to zero. The acceleration experi-
enced by the jth sheet from the left depends only on the
difference between the number of sheets (mass) to the
right and the left and is given by
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A4;=27Go(N —2j+1), (1)

where G is the universal gravitational constant. The en-
ergy of a system of sheets is constant and is given by

N

E=lo 3 v}+2rGo? 3 |x;,—x;|, ()
j=1 j<i

where v; and x; are the velocity and position of the jth

sheet, respectively. If the particles are ordered and la-

beled consecutively from left to right (i.e., x;;>x;) the
energy can then be expressed as

N N—1
E=1l0 3 v}+2rGo* 3 j(N —j)x;1—x;) . 3)
Jj=1 ji=1

To see this, consider the work done by gravity in re-
ducing the distance x;,,—x; to zero while keeping the
distance between all other sheets constant. This work is
equivalent to bringing/two sheets together of mass jo and
(N —j)o (i.e., the mass on the left and the right). Repeat
this process for each pair of sheets until all the sheets are
coincident. The potential energy is given by the sum of
those terms, and the total energy is that shown in (3). It
is customary to define the characteristic period of a sheet
in the system as 1, =(Gpy/m) /2, where p,, is the equilib-
rium mass density evaluated at the origin. This
represents a typical period of oscillation of a particle in
the system.

Some of the basic equilibrium properties of the one-
dimensional gravitating systems were derived by Rybicki
[12]. In his paper, Rybicki derives the single-particle
equilibrium distribution function using both the canoni-
cal and microcanonical ensembles. Because the potential
energy is a homogeneous function of the coordinates of
first degree, all dependence on parameters can be re-
moved by introducing convenient units as follows [12]:

172
L.=—2E - |4E
0 3ﬂ'GM2’ 0 3M ’
) E 172
= —_— N 4
O | #MG | |3M @

where L is length, V is velocity, T is time, G is the univer-
sal gravitational constant, and E and M are the total sys-
tem energy and mass, respectively. Dimensionless units
of acceleration, velocity, position, and time are then
given by

1/2
4 _v|3m
A—a=>we VOV | TE ’
, (5)
X |376M2 |
2E A

We will adopt these units in the remainder of the paper.

Obviously, the system can also be viewed as a collec-
tion of particles (mass points) moving in one dimension,
each of mass m =1/N, where m replaces o in Egs.
(1)-(3), and we will use this language freely. In dimen-
sionless units the acceleration of the jth particle with the
ordered labeling is
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a;=--(N—2j+1). (6)

|~

Therefore, in specifying the particle number, we uniquely
define the acceleration of that particle and vice versa.
The motion of the particles is determined by both the ac-
celeration and velocity; therefore the natural state space
of the system is the (a,v) space.

In the Vlasov limit the total energy and mass of the
system are held constant while the number of particles in
the system is allowed to approach infinity. The probabili-
ty density in p=(x,v) space of the resulting continuous
fluid satisfies the Vlasov equation,

of __ df df

31 "o Y 7
This equation is known to have an uncountably infinite
number of stationary solutions [13]. In this limit, the ve-
locity and position equilibrium distribution functions
reduce to

6(v)=7""2exp(—v?) (velocity) , ®
p(x)=1sech’(x) (position) ,

where x and v are in dimensionless units.

III. MARKOYV PROCESS

In the OGS consisting of N discrete particles, the ve-
locity (v) of each particle is a continuous function of
time. However, when two sheets cross, their accelera-
tions (a) experience a finite jump. As the number of par-
ticles tends to infinity, the size of the jumps in the ac-
celeration vanishes as 1/N and the crossing rate increases
as N. By assuming that the (a,v) process for a single
sheet in the system is Markov in the large N limit, the
jumps in the acceleration should go over to a continuous
(diffusion) process. One may be tempted to model the ac-
celeration process alone as Markov without the velocity.
However, because the transition probability also depends
on the velocity, this approach would not accurately mod-
el the system dynamics. The diffusion process will be
completely defined by the first and second order
infinitesimal increments which give the average change of
a quantity in a small time interval. To calculate the in-
crements for the (a,v) process the transition probabilities,
and thus the crossing rates, are required.

A. Derivation of the general crossing rates

In order to calculate the infinitesimal increments of the
(a,v) process, we have to first find the transition probabil-
ities of the jump process, and these will depend on the
crossing rates. In this section we will derive very simple
expressions for the crossing rates that depend only on N
and the singlet distribution function f in the limit of large
N.

The procedure will be the following: We start with the
ordered system with the condition for a crossing and
average over the phase space while conditioning on the
initial acceleration and velocity of the labeled particle.
For the discrete system, the position of the test particle
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will not be fixed by the value of the acceleration but in-
stead will be distributed about a most probable value, w.
The crossing rates depend on this distribution, which is
sharply peaked in the limit of large N. Expanding expres-
sions in the crossing rates and canceling terms that differ
by no more than order (1/N), we obtain expressions for
the crossing rates that depend only on N and f.

The crossing rates for a labeled particle in the OGS de-
pend on f, which depends explicitly on the acceleration
(position) and velocity. No assumption about equilibrium
will be made for the derivation, only the assumption of
statistical independence of the particles in phase space.
Monoghan and Fukita and Morita [11] have shown that
this assumption is valid specifically for the equilibrium
OGS in the limit of large N. Braun and Hepp [14] have
shown this to be true for a wider class of systems with
smooth interactions even when equilibrium is absent.
With this assumption, the N-particle phase space distri-
bution function can be expressed as

F M ottg o) =F () f () -+ flpy) , &)

where u;=(x;,v;). For the OGS which has no “col-
lisions,” only crossings, the singlet distribution function
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S (x,v) will satisfy the Vlasov (or collisionless Boltzmann)
equation for mass conservation (7) in the limit N — oo.
For finite but large N the Vlasov assumption will not hold
exactly, but should provide a good approximation since
changes in the acceleration and velocity will be small.
The requirement for a particle in the system to have a
crossing with another particle from the right {left} in a
small time At is

(v;

iV DAE> (x4 —X;)

(10)
{(vj _y—v))At>(x;—x; )},

where the x sXj+1> €tC. refer to particle positions in the
ordered system. The probability of having a crossing is
found by conditioning on the initial acceleration and ve-
locity of the test particle and averaging the requirement
for a crossing over the 2N-dimensional phase space.
Thus the expression for the probability of a crossing from
the right for the jth particle with velocity (v) and ac-
celeration (a) is

PrAt=(e[At(Uj'—Uj+1)'—(Xj+1'_xj')]la,v) . (11)

Making use of (9) and expanding the expression we obtain

N—1
ffwdxlffwdvl T ffwdefo—odeN IT ©Cxr 41— X )f (pie ) ()80 —v)O[AL (v —v; 4 1) —(x; 41— x;)]
k=1

P.At=

© © o N—-1
fa_owdx1f_ dvy - f dxy f dvy [T OCxp41—x ) f (i )f (py)8(v; —v)

_ ffwdxjfx_jwp(xj_l)dxj_l s fx_zmp(xl)dxlf(xj,

V) [V F(xj0) (v —v")dv’

f_wwdxjfjjwp(xj_l)dxj_l. ) .f_;p(x,)dxlf(xj,v)ijp(xj+1)dxj+1

f):jp(xj+2)dxj+2f:ocj+2p(xj+3)dxj+3 T ffN_lp(xN)de

S pxi)dxa [ 3 Py a)dx e [ 2 plxy)dxy

where the mass density
p(xj)=f_°o S (x;,0;)dv; (13)

and we have (1) introduced step functions to fix the order-
ing, and (2) introduced a 6 function as a condition on the
velocity (v). A similar expression holds for a crossing
from the left. In (12), the step functions in x; restrict the
range of integration for the position of each particle. The
symmetry of the phase space distribution under the ex-
change of particle coordinates admits the rearrangement
of the integration order in both the numerator and
denominator. This symmetry allows for the following
simplification:

fxwdx1 f:dx2 ces f:_ldxv lll'Ip(xj)

=1 [fx“’p(x')dx']”= SIM 0T (14)

Vi v

(12)

A similar expression holds for M,(x), the integrals on the
left side of j. P, then becomes

B J2.ax fF0F;_y y_j—y(x) [V f(x,0) (0 —v")dv’

P, oy
f_wdxf(x,v)Fj_,,N_j(x)
(15)
where
M (x)]"[ M, (x)]"
Fy ()= ’xj,in, 2l (16)

and we have canceled the At terms for convenience. The
probability distribution in x of a particle with a given ac-
celeration is simply F, ,,(x). Thus, for finite N, the ac-
celeration does not fix the position of the particle, and we
find contributions to P, from all x. However, taking the
limit of large N with a=j /N fixed (0<a <1) results in a
sharp maximum for F, ,,. Let ® and o’ denote the values
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of x which, respectively, maximize the numerator and
denominator of (15). Since F, ,(x) is varying rapidly
near o, we expand In[F, , (x)] about its maximum and
use M, (x)=1—M,(x) to give

__n__ fo
M(w)= —— f_wp(x)dx ,

(17)
=_m _r"
M, (o) S fw p(x)dx .
F, ,(x) now becomes
—Hx —w)pw)n +m)?
F, ,(x)=F, (o) exp .
nm

(18)

With appropriate normalization, the Gaussian approxi-
mates a 8 function in the limit of large N. Therefore

1/2
2mnm
F, , (x)=F, ,(0)8(x —0) | V= (19)
" om0 pHw)(n +m)}
A similar expression is obtained for the denominator.
Fn,m +1(X)=Fn,m +1(co')8(x —o')
172
2a7n(m +1) (20)
2( 1 3
pAo’')n+m+1)

As N becomes large, the distribution about w becomes
sharper until, in the limit, x is fixed at w. For finite N,
however, these results will be only approximate and may
cause problems for particles in the wings of the distribu-
tion where the particle density p(w) is low.

Note that in the large N limit, o =~®’. Thus, complet-
ing the integration and canceling terms which differ by
no more than order (1/N), we finally obtain

pr:va flo, v )v—v')dv',
o 1)
P,=N [ " f(o,0")(v'—v)dv’

for the crossing rates, P, and P;. These crossing rates are
identical to what we would expect for a test particle at @
having a crossing in a nonuniform bath of N uncorrelated
particles with singlet distribution function f(u). Because
in the real system the total number of particles is fixed,
finite size effects will induce correlations, and therefore
these forms for the crossing rates will be only approxi-
mate.

In order to evaluate P, and P, for a system with a given
stationary Vlasov distribution function we must first find
®, the most probable value of x, by inverting (17). Using
(6) in (17) and taking the limit of large N gives

ta—a)=[" [ fxvdvdx . (22)

This equation directly relates o, the most probable value
of x, to the acceleration. The stationary Vlasov distribu-
tion function f (w,v) can then be converted to a function
of the acceleration and velocity for use in the general
forms for the crossing rates (21).
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B. Derivation of the general Fokker-Planck equations

Since, in the large N limit, the (a,v) process for a la-
beled particle in the OGS is a diffusion, it is governed by
a Fokker-Planck equation which determines the evolu-
tion of the transition probability and provides a complete
statistical model for the system. In the case of the OGS,
the transition probability is determined by the probability
of one particle crossing another in a small time Az.

Let P(a,v,7|ay,v,) be the transition probability for a
labeled particle in the OGS, where we have conditioned
on the initial state (ay,vy). In this system each particle
experiences a jump in its acceleration during a crossing
while the velocity remains a continuous function of time.
As the number of particles in the system goes to infinity
and the size of the jumps goes to zero, the acceleration
process will move from a jump to a diffusion. Since we
wish to examine this diffusive behavior we will take the
limit of the increments as N — «.

The general form for a two-variable FP equation is

P (Z,7|¥,7') - 9 - — =
5 21 oz, [B,(Z,7)P(Z,7|y, )]
+ 3L & e @ npE )]
ij 2 aZtaZj ],J b b y’ b

(23)

where P is the transition probability for the process. The
functions B; (the drift vector) and C;; (the diffusion ten-
sor) are, respectively, the first and second order
infinitesimal increments and are the only information re-
quired to describe the process. For the (a,v) process, the
infinitesimal increments are defined by

K,,= lim ——((Aa)Av)|a,v) . 24)
Y Ar—0 AT

The average in (24) is calculated using the transition
probability for the jump process and conditioning on the
acceleration and velocity. For a diffusion only the first
and second order increments are nonzero. The B; and
C;; are then given by

Bi =K,u.,v8p+v,l’ Ci,j:Ku,vsp,-i-v,Z . (25)

In this section we derive general forms for the
infinitesimal increments for an arbitrary stationary
Vlasov distribution, f(x,v), from which the Fokker-
Planck equation governing the (a,v) process immediately
follows. Previously, we derived a general form for the
crossing rates of a labeled particle with given initial con-
ditions.

For particle j in a small time A7 there are three possi-
ble values for a transition Aa: Aa =(—2/N,0,2/N) for a
crossing from the right, no crossing, and a crossing from
the left, respectively. Equations (21) give the mean rate
of crossing from the right and left (P,,P;). Using (24),
the general first order infinitesimal increment of the ac-
celeration is
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K, la, v)—I}ng:TO Ar P At |—— [+P,AT(0)
2
+P AT | =
= lim lim | |2 |(P,—P,)
N—>w0AT—0 N y r
=K ola,v)=—2vp(w) , (26)
where P,=1—(P,+P;). The general first order
infinitesimal increment of the velocity is
Ko,l(a,v)=a 27

All other higher order infinitesimal increments of the
(a,v) process vanish in the Vlasov limit. Therefore the
general Fokker-Planck equation governing the evolution
of the (a,v) process is

dP(a,v,7) _ JoP d[p(w)P]
—2—=—a——2 .
or dv da
This is a Fokker-Planck equation with vanishing diffusion
tensor. In the limit that N — o we see that there is no

diffusion, and the evolution of (a,v) for a particle in the
OGS is deterministic. The solution to (28) is

P(a,v,7)=

(28)

8la —ap)dlv —vp), (29)

where a; and vy represent the deterministic evolution of
a and v, and w—x; where xj, is the particle position in
the deterministic Vlasov limit. Substitution of (29) into
(28) gives a contribution from each 6 function. For a
solution, the coefficients of each must vanish. This gives
the following pair of coupled ordinary differential equa-
tions for a; and v, for the stationary system:

daj,
dr

dvp
=—2vpp(xp), 3, 9 -

(30)

Thus we have seen that in the Vlasov limit the size of
the fluctuations goes to zero as the number of particles
approaches infinity. Note, however, that in the discrete
system the fluctuations will not vanish for any N < . In
taking the limit of large N we have washed out the
dynamical fluctuations that we wanted to study. In order
to see these fluctuations as N becomes large they must be
magnified (scaled). Let £ and 7 represent the scaled fluc-
tuations in the acceleration and velocity about their
deterministic limits,

E=V'N(a—ap), n=VN(v—uvp). 31)

We now find R v the infinitesimal increments of the
scaled process (£,m), by again using (24). Since
a—ap=—2p(xp)@w—xp), the general first order incre-
ment of £ is

3395
R (&)= 11m hm £((Aa> (Aap))
dlnp(xp)
— Ry 0&m)=—21p(xp) +up a2 .
D
(32)

The general first order increment of 7 is treated similarly
and we find

N (Av —Avp))

Ry (E,m)= lll‘n lim _A—_<

N— oAT—0 AT

—Rg,(£,m)=€ . (33)

The general second order increment of £ is
- 5 . N 2 2
Ryolgm)= lim lim — [{(Aa)*) +{(Aap)?*)
_2<Ad ><A(1D>]

= lim %(P,+P,)

N— o
..—.»R2,(,(§‘,'r])=4f_°° dv'|lvp—v'|f(xp,0’) .
(34)

All other infinitesimal increments of the scaled process
are equal to zero. This gives a Fokker-Planck equation
with a nonzero diffusion constant for the (£,n) process,

oP(&,m,T) _ O
= 5 R10P]

3 (R, P1+ 12 (R, P] (35)
3y Ko g2 2ot

24

where R, Rg, and R, are given by Egs. (32)-(34).
From (35) we see that the (£,n) process is a diffusion that
characterizes the drift of a labeled particle away from
ideal Vlasov behavior. By scaling the fluctuations we
have magnified them so that they can be seen and stud-
ied. Since R;, and R, are functions only of time, and
R, ( does not depend on § or 7, (35) belongs to a class of
equations known as generalized Ornstein-Uhlenbeck pro-
cesses whose solutions are known to be bivariate Gauss-
ian [9].

This general form of the Fokker-Planck equation (35)
was derived assuming only the statistical independence of
the particles. No knowledge of the exact form of the N
body probability distribution function is required to ob-
tain the FP equation governing the diffusion process for a
specific initial distribution, only the form of the single-
particle distribution function in the Vlasov limit. This
approach allows the flexibility needed to study other,
perhaps more complicated, stationary nonequilibrium
distributions.
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IV. APPLICATION TO EQUILIBRIUM

To verify our technique and check for consistency, we
now apply our general Fokker-Planck equations to the
case of the OGS in equilibrium. To do this we need to
know the actual form of the Vlasov equilibrium distribu-
tion function, which is given above as f (x,v)=0(v)p(x).
Substituting f (x,v) into (22) and inverting gives

w=—tanh™!(a) . (36)

This now gives @, the most probable value of x, in terms
of the acceleration a. For the discrete system, the actual
position x of a particle will be distributed about w. As
the system size N is increased, the distribution of the po-
sition about w will become sharper. Thus

(37

plo)=1sech*(w)=1(1—a?)

and

7 2(1—a?) exp(—v?)

2 (38)

flo,v)=

After substituting (38) into (21) and integrating, the cross-
ing rate from the right (and similarly the left) becomes

P d B, PAR ) (39)
where

Hp=""lv+v erzfirvl)/]2+ exp(—v?) o
and

k=%1—az) ' 41)

These crossing rates for the OGS in equilibrium agree
with those obtained by Miller using the canonical ensem-
ble [8], and again later using the microcanonical ensem-
ble [15], and provide a check on the assumption of statist-
ical independence.

A. Fokker-Planck equations for the equilibrium system

We can now use these equilibrium forms for the cross-
ing rates in the general equations governing the (a,v) and
(&,7m) processes. Using (38) in (28) and (30), the Fokker-
Planck equation and the corresponding deterministic
equations governing the (a,v) process are

oP(a,v,7) _ aP oP

=—g— —2avP +v(l1—a?)—

or dv da “2)

and
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daj, vp
i =—vp(1—aB), 5, 9> (43)

where again ap, vp, and xp represent the deterministic
Vlasov evolution of a, v, and x.

Similarly, we obtain the following Fokker-Planck equa-
tion describing the evolution of the scaled (£,7m) process
in equilibrium:

oP d d 1 a2

—_—— —_— +_.___

ar 3E (GP) an (&P) 2 28 (DP) , (44)
where D (7) is the time-dependent diffusion term,
D(1)=2(1—ap )7~ 2 exp(—v3)+vperflvp)], (45)

and G (&, 7, 7) is the space- and time-dependent drift,

G(&m,7)=2apvpE—n(1—a}) . (46)

B. Moment equations for the equilibrium (&, 7) process

The specific FP equation, (44), governing the (£,7n) pro-
cess for the equilibrium ensemble was derived in the
preceding section. By conditioning on £=7=0 at the in-
itial time 7=0, it provides a tool for investigating the
growth of fluctuations in (aq,v) away from idealized
Vlasov behavior. To quantify the average deviations
from Vlasov behavior at a given time 7, it is necessary to
derive and solve the ordinary differential equations
(ODE’s) which govern their behavior. Since the solution
of (44) is bivariate Gaussian, all of the information is con-
tained in the first two moments. Define the moments

L,,as

L,,={&7"Im),

where u and v can take on the values 0, 1, or 2. By multi-
plying the FP equation by &“nY and integrating over
(§,m), we obtain the following set of first order coupled
ODE’s for their evolution:

dL, ,

dt =2aDvD#Lp,v__(1_alz) ):U‘Lu—l,v-f-l

47)

D
+'VL”+1'V_1+7’J(IJ_1)L#__2’V > (48)
where D is given by (45). With the given initial values of
(0,0), we see from (48) that the first order moments
remain constant at zero.

C. Numerical solutions

The general equation (48) provides three coupled equa-
tions for the second order moments of the (&,n) process.
With the addition of Egs. (43) for the deterministic
Vlasov process, they form a set of five coupled ODE’s
that govern the time evolution of the scaled fluctuations.
These equations were integrated numerically. Their solu-
tion will be compared in Sec. V to the ensemble average
of the fluctuations obtained from the dynamical simula-
tion of an OGS with an initial distribution obtained by
sampling the canonical ensemble. Initial conditions that
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represent both low and high energy particles were chosen
in order to sample very different regions of the u space.
The energies are such that the high energy particle does
not range too near the ends of the distribution, while the
low energy particle does not remain too near the system
center for all times. Graphs of the theoretical predictions
for the scaled fluctuations are shown in Figs. 1 and 2 for
the low energy particle, and Figs. 3 and 4 for the high
energy particle. Both long (7=20) and short (7=0.5)
times are illustrated.

A large amount of structure is seen in the 7=20 time
graphs. In general, as time progresses the fluctuations
from Vlasov behavior change periodically while growing
larger on the average. The discreteness of the system
forces a particle to drift away from its Vlasov image after
a short time. It appears that while the test particle is
near the center of the distribution its many crossings pro-
duce larger deviations in acceleration (smaller in velocity)
from Vlasov behavior whereas, away from the center, its
fewer crossings result in smaller deviations in accelera-
tion (larger in velocity). This cycle repeats itself as the
particle oscillates in the system and produces the “out of
phase” appearance of the {£2) and (%?) plots. The dis-
tinction is magnified for higher energy particles that are
able to get far from the center of the distribution where
they have fewer crossings than particles of low energy.
The fluctuations drop to zero (focus) and then peak again
periodically as the particle traverses the system.

V. NUMERICAL SIMULATIONS

Numerical simulations of the OGS were run on sys-
tems of 1000 particles to test the application of the theory
to large discrete systems. Simulations were run with ini-
tial conditions identical to those used for the theoretical
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FIG. 1. Growth in time of the scaled theoretical fluctuations
away from their Vlasov images during a short time interval
(==0.1z,) for a low energy particle.
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FIG. 2. Growth in time of the scaled theoretical fluctuations
away from their Vlasov images during a long time interval
(==3¢,) for a low energy particle.

predictions, allowing a direct comparison of the simula-
tion results to the theoretical predictions. Statistical data
were obtained by conditioning on the acceleration and ve-
locity of a single particle. The acceleration, velocity, and
position determine the test particle’s energy. As predict-
ed by the theory, the scaled fluctuations of particles with
high and low initial energies show markedly different
behavior.
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FIG. 3. Growth in time of the scaled theoretical fluctuations
away from their Vlasov images during a short time interval
(==0.1¢,) for a high energy particle.
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FIG. 4. Growth in time of the scaled theoretical fluctuations
away from their Vlasov images during a long time interval
(==3t,) for a high energy particle.

To obtain the initial equilibrium state, the test
particle’s acceleration and velocity are set to the desired
initial values. In Eq. (3) we saw that the energy of the
system could be written as a sum over nearest neighbor
distances. In the canonical ensemble, these nearest
neighbor distances are distributed exponentially [12].
With the chosen acceleration and velocity of the test par-
ticle, the relative positions of all the particles are found
by direct sampling. All positions are then shifted to fix
the center of mass at the origin. Levy’s method [16] is
used to obtain the velocities of the other N —1 particles
of the ordered system from the canonical ensemble under
the additional condition that the total momentum be
zero.

Numerical simulations of the OGS were run for a total
time of 7=20. Statistics for the test particle were taken
every time it had a crossing with another particle. Posi-
tion, acceleration, and velocity were recorded as part of
the statistical information. In general, a statistical run
consisted of an ensemble average of 100 sequential simu-
lations. Each of the simulations began with an initial sys-
tem in equilibrium obtained independently using the
methods described previously. Figure 5 shows a u-space
plot of a typical initial system sampled from the equilibri-
um distribution. The data taken from the test particle
during each simulation are stored and the scaled fluctua-
tions from ideal Vlasov behavior are calculated. After
the last simulation is complete the fluctuations from ideal
Vlasov behavior for each run are averaged. Figure 6
shows a u-space plot of a typical system after a simula-
tion run of 7=20. The shapes of the plots before and
after the simulation are similar.

Simulation times of 7=20 should be more than ade-
quate to study the diffusion process. As the system
evolves in time, the test particle begins to drift away from

FIG. 5. u-space plot of a typical initial state of the system for
a dynamical simulation.

its Vlasov image. For long times the acceleration and ve-
locity of the test particle will be radically different from
its Vlasov image. It is not reasonable to expect to identi-
fy the test particle with its image after a time sufficient
for the fluctuations in a quantity to become comparable
to the quantity itself, ie., (&)/N=(a?) or
(9?)/N =(v?). In dimensionless units the variances of
acceleration and velocity are of order unity. Therefore
an ensemble average of systems sampled from the equilib-
rium distribution while conditioning on the initial state of

Velocity
o

-4 -3 2 -1 0 1 2 3 4
Position

FIG. 6. p-space plot of a typical state of the system at time
7=20 (==3t¢,) for a dynamical simulation.
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TABLE 1. Parameters for conditioned sheets.

Sheet number j Acceleration Velocity
400 0.201 0.1
100 0.801 0.9

the test particle should at least be modeled successfully
by the diffusion process for times such that
(£%) <<N,{(n?) <<N. Table I lists the initial values of
the conditioned particles. All numbers are in scaled (di-
mensionless) units.

Plots of the average scaled fluctuation in acceleration,
(£?), of a low energy particle and the theoretical predic-
tions are shown in Figs. 7 (7=0.5) and 8 (7=20). Note
that the magnitudes compare favorably for very short
times as the theory predicts, but tend to start drifting
away relatively soon. For 7<0.25, the difference be-
tween the simulation and theory is approximately 10% or
less. It is surprising that the simulation results and
theoretical predictions rejoin, and both the magnitude
and phase agree after about 7=17. We have not yet
determined a satisfactory explanation for this long time
effect. The average scaled fluctuation in velocity, {7?),
and the average scaled fluctuation of the product, {£7),
exhibit similar behavior and, to conserve space, are not
shown.

In Figs. 9 (r=0.5) and 10 (7=20) the simulation and
theory of the average scaled fluctuation in acceleration,
(&%), for a high energy sheet are compared. Note the ex-
cellent agreement in phase in the long time plots. This
appears to be true of the high energy particles in general.
However, comparison of the magnitudes reveals a large

0.6

<€* Theo
05 ] . 3 ry

<&’> Simulation

0.4 -

N
S, 03
V
0.2 -
0.1
oo
0.0 0.1 0.2 0.3 0.4 0.5
Time (1)

FIG. 7. Comparison of the growth in time of the scaled
theoretical variance of the acceleration with the results of the
simulation during a short time interval (=0. 1z, ) for a low ener-
gy particle.
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FIG. 8. Comparison of the growth in time of the scaled
theoretical variance of the acceleration with the results of the
simulation during a long time interval (=3¢,) for a low energy
particle.

discrepancy: The theoretically predicted average scaled
fluctuation is on the order of four times that of the simu-
lation after 7=20. For very short times, simulation and
theory compare favorably but for longer times they
diverge. Again, for 7<0.25, the difference between the
simulation and theory is on the order of 10% or less.
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FIG. 9. Comparison of the growth in time of the scaled

theoretical variance of the acceleration with the results of the
simulation during a short time interval (=0.1¢,) for a high en-
ergy particle.
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FIG. 10. Comparison of the growth in time of the scaled
theoretical variance of the acceleration with the results of the
simulation during a long time interval (=3¢,) for a high energy
particle.

Note also the focusing effect shown by the high energy
particle variances as they periodically drop down to zero
and then peak to a maximum. As discussed earlier, this
effect, predicted by the theory, is confirmed in the simula-
tions. Again, the average scaled fluctuation in velocity,
(n?), and the average scaled fluctuation of the product,
(£&m), exhibit similar behavior and are not shown.

VI. CONCLUSIONS

In this paper, dynamical properties of the one-
dimensional self-gravitating system were investigated us-
ing both analytical methods and computer simulations.
Expressions for the crossing rates, infinitesimal incre-
ments, and Fokker-Planck equations that govern the
(a,v) and (&,7n) processes of a labeled particle were de-
rived for an arbitrary initial state corresponding to a sta-
tionary solution of the Vlasov equation. These general
equations are intended to allow the study of stationary
distribution functions other than equilibrium. Simula-
tions of the OGS starting from arbitrary initial conditions
show the formation of various quasiequilibrium states,
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often long lived, during the evolution of the system.
These quasiequilibrium states, for large systems, are be-
lieved to be approximate stationary solutions to the
Vlasov equation. The diffusion equations derived here for
an arbitrary stationary solution may provide a probe to
help understand the important dynamical features of
these systems as they evolve.

Two main assumptions were used to arrive at the gen-
eral expressions for the diffusion model. First, a Markov
assumption for the jump (acceleration) process that
occurs when two particles cross each other was used to
introduce stochasticity into the system dynamics.
Second, the assumption of statistical independence in the
phase space (stosszahlansatz) was used to provide the
separability of the phase space distribution function into
a product of single-particle functions needed to arrive at
simple general forms for the crossing rates. These can be
evaluated in turn for any stationary distribution function
that satisfies the Vlasov equation. As a check, the gen-
eral forms for the crossing rates and infinitesimal incre-
ments were evaluated for the special case of equilibrium.
They were compared with the analytic expressions de-
rived earlier from the more precise equilibrium canonical
and microcanonical ensembles, and found to agree exact-
ly.

A thorough test of the diffusion model was undertaken
for the special case of equilibrium. Theoretical predic-
tions for the scaled deviations from Vlasov dynamics of
the acceleration and velocity (§ and 1) were derived and
compared to actual dynamical simulations. Results from
ensemble averages of 100 dynamical simulations of a
finite system of N =1000 particles agreed with the theory
for short times (7 <0.25) for diffusing particles character-
ized by both high and low energies. For much longer
times, the magnitude of the fluctuations for low energy
particles (but not high) generated by the simulations also
agreed with the theoretical predictions. In addition, the
unusual focusing effect predicted by the theory for higher
energy particles was confirmed in the simulations, al-
though the difference in magnitude between theory and
simulation at the peaks was quite large. This may indi-
cate the importance of two-particle or higher correlations
and collective modes which were neglected by the
theoretical assumptions. Further study is required to ex-
plain the quantitative differences in the fluctuations be-
tween the stochastic theory and simulation. The answer
to this question may itself provide insight into the work-
ings of the system dynamics. In future work, the contri-
butions of both two-particle correlations and collective
modes to the relaxation process will be investigated.
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